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Abstract 13 

In this study, an alkali-activated slag cement produced with a blend of sodium carbonate/sodium 14 

silicate activator has been characterised. This binder hardened within 12 h, and achieved a 15 

compressive strength of 20 MPa after 24 h of curing under ambient conditions, which is associated 16 

with the formation of an aluminium substituted calcium silicate hydrate as main reaction product. 17 

Carbonates including pirssonite, vaterite, aragonite and calcite were identified, along with the 18 

zeolites hydroxysodalite and analcime at early times of reaction. The partial substitution of sodium 19 

carbonate by sodium silicate reduces the concentration of CO3
2- in the pore solution, increasing the 20 

alkalinity of the system compared to a solely carbonate-activated paste, accelerating the kinetics of 21 

reaction, and supplying additional silicate species to react with the calcium dissolving from the slag, 22 

as the reaction proceeds. These results demonstrate that this blend of activators can be used 23 

effectively for the production of high strength alkali-activated slag cements, with a microstructure 24 

comparable to what has been identified in aged Na2CO3-activated slag cements, but without the 25 

extended setting times reaction usually identified when using this salt as alkali activator.  26 

 27 

Keywords: alkali-activated slag, near-neutral salts, microstructure, X-ray diffraction, nuclear 28 

magnetic resonance, scanning electron microscopy 29 

 30 

1. Introduction 31 

 32 

Alkali-activated slags are part of the tool-kit of Portland clinker-free alternative binders that have 33 

been developed over the past decades. These materials are produced through the chemical reaction 34 

between industrial by-products and an alkaline solution, promoting the formation of a hardened 35 

solid (Provis and Bernal, 2014). There is a general consensus that alkali-activated slag binders can 36 
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exhibit advantageous technical properties, such as high temperature resistance (Guerrieri et al., 37 

2010), resistance to sulphate (Ismail et al., 2013) and acid attack (Lloyd et al., 2012, Bernal et al., 38 

2012b), meaning that they are suitable for use in various specialised applications, as well as for 39 

general-purpose concrete production. However, prediction of the performance of alkali-activated 40 

slag materials based simply upon mix design information is not straightforward, as there are many 41 

factors that can modify their microstructure and transport properties, such as the source, chemical 42 

composition, mineralogy and thermal history of the slag used, the type and concentration of the 43 

alkaline activator incorporated (Wang et al., 1995, Juenger et al., 2011), along with the mixing 44 

duration when producing the binder (Palacios and Puertas, 2011) and the curing conditions adopted 45 

(Bakharev et al., 1999).  46 

 47 

The role of the alkaline activator in an activated slag binder system is to promote an increase in pH, 48 

which drives the initial dissolution of the precursors, and the consequent condensation reaction to 49 

form calcium aluminium silicate hydrate (C-A-S-H) type gels as main reaction product (Zhou et al., 50 

1993, Shi, 2003, Song et al., 2000), and layered double hydroxides with a hydrotalcite-type 51 

structure, along with zeolites as secondary reaction products, depending on the composition of the 52 

slag used (Provis and Bernal, 2014, Bernal et al., 2013). The activators commonly used for the 53 

production of activated slag binders are sodium hydroxide (NaOH), sodium silicates (Na2O∙rSiO2), 54 

sodium carbonate (Na2CO3) and sodium sulphate (Na2SO4) (Wang et al., 1994, Shi et al., 2006), 55 

and the effectiveness of each has been mainly associated with the elevated pH and reactive species 56 

that each of these solutions can provide.  57 

 58 

Sodium carbonate has been identified as a suitable possibility to achieve comparable pH in the pore 59 

solution of alkali-activated slag to that identified in Portland cements (Bai et al., 2011), and is 60 

significantly less expensive than most other possible activators. Sodium carbonate activation of 61 

blast furnace slag has been applied for several decades, especially in eastern Europe (Krivenko, 62 

1994, Xu et al., 2008), as a more cost-effective and environmentally friendly alternative to the 63 

widely used activators for production of activated slag products; it is possible in many parts of the 64 

world to obtain Na2CO3 either as a secondary product from industrial processes, or by mining alkali 65 

carbonate deposits followed by moderate-temperature thermal treatment (Provis et al., 2014a, 66 

2014b). More recently, Na2CO3-slag-fine limestone concretes have been observed to show very 67 

good early strength development, as well as calculated potential Greenhouse emission savings as 68 

high as 97% when compared to Portland cement (Sakulich et al., 2010).  69 

However, Na2CO3 is a relatively weak alkali compared to the hydroxide or silicate activators which 70 

are more commonly used in alkali activation. For this reason, when using a sodium carbonate 71 
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activator in a slag-based binder, delayed formation of strength giving phases is often identified at 72 

early times of curing (Fernández-Jiménez and Puertas, 2001, Duran Atiş et al., 2009). At early age, 73 

formation of calcium and mixed sodium-calcium carbonates, as a consequence of the interaction of 74 

the CO3
2- from the activator with the Ca2+ from the dissolved slag, is favoured instead of the 75 

development of calcium silicate hydrate gels (Bernal et al., 2015).  In order to overcome the delayed 76 

hardening (which can take up to 5 days in some systems) and slower strength development of these 77 

materials, high temperature curing has usually been adopted, which limits the commercial 78 

application of these materials. In a recent study  it was proposed (Bernal et al., 2015) that what 79 

might be required to overcome the delayed formation of strength giving phases in these systems is 80 

either:  81 

(i) a mechanism by which the carbonate can be removed from solution at early age, leaving the 82 

slag to then react in a NaOH-rich environment, or  83 

(ii)  the addition of a second activator compound to modify the pore solution chemistry of the 84 

system, and supply species which are more prone to react with the progressively dissolving 85 

calcium from the slag than is the CO3
2- supplied by the sodium carbonate activator. 86 

 87 

In this study, we evaluate the effect of sodium silicate addition on the structural development of a 88 

sodium carbonate-activated slag. X-ray diffraction, 29Si and 27Al MAS NMR spectroscopy and 89 

scanning electron microscopy were used to determine the nature and chemistry of the reaction 90 

products formed, and the kinetics of reaction are assessed via isothermal calorimetry of fresh paste 91 

specimens. Compressive strength values of mortars corresponding to the pastes produced for the 92 

structural study are also reported. 93 

 94 

2. Experimental methodology 95 

 96 

2.1.Materials and sample preparation 97 

As primary raw material a granulated blast furnace slag (GBFS) was used, with oxide composition 98 

as shown in Table 1. Its specific gravity is 2800 kg/m3 and Blaine fineness 410 ± 10 m2/kg. The 99 

particle size range, determined through laser diffraction, was 0.1-74 m, with a d50 of 15 m. 100 

 101 

Table 1. Composition of GBFS used. LOI is loss on ignition at 1000°C 102 

Component  
(mass % as oxide) 

SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Others LOI 

GBFS 33.8 13.7 0.4 42.6 5.3 0.1 0.4 1.9 1.8 
 103 
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In order to produce the two activating solutions used, reagent grade sodium carbonate (Sigma-104 

Aldrich) was dissolved in water until complete dissolution was reached. Simultaneously, a blend of 105 

NaOH pellets and a commercial silicate (PQ Grade D) solution was produced in order to achieve a 106 

sodium metasilicate solution with a molar ratio of SiO2/Na2O of 1.0 (i.e. a composition 107 

corresponding to dissolved Na2SiO3).  108 

 109 

Paste specimens were formulated with a water/binder ratio of 0.40 and an activator (50 wt.% 110 

Na2CO3/50 wt.% Na2SiO3) content of 8 g per 100 g of slag. The activating solutions were mixed 111 

separately with the anhydrous slag, by first adding the sodium silicate, followed by the sodium 112 

carbonate. The paste was mixed in a Hobart N50 bench mixer at low speed for 10 min to achieve 113 

homogeneity. All paste specimens were cured in sealed centrifuge tubes at 23°C until testing. 114 

Mortar cubes, 50 mm in size, were used for compressive strength testing; these were formulated 115 

with a sand:binder ratio of 1:2.75, and a binder formulation matching the paste specimens. 116 

 117 

Isothermal calorimetry experiments were conducted using a TAM Air isothermal calorimeter at a 118 

temperature of 25   0.02°C. Fresh paste was mixed externally, weighed into an ampoule, and 119 

immediately placed in the calorimeter to record heat flow for the first 140 h of reaction. All values 120 

of heat release rate are normalised by total mass of paste.  121 

 122 

2.2.Tests conducted on hardened specimens 123 

The hardened paste specimens were analysed through: 124 

 125 

 X-ray diffraction (XRD), using a Bruker D8 Advance instrument with Cu KĮ radiation and a 126 

nickel filter. Data were collected with a step size of 0.020º, over a 2ș range of 5º to 70º. 127 

 Magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy; 29Si MAS NMR 128 

spectra were collected at 119.1 MHz on a Varian INOVA-600 (14.1 T) spectrometer using a 129 

probe for 4 mm o.d. zirconia rotors and a spinning speed of 10.0 kHz. The 29Si MAS 130 

experiments employed a pulse width of 6 µs, a relaxation delay of 60 s and 4300-6500 scans. 131 

Solid-state 27Al MAS NMR spectra were acquired at 156.3 MHz on the same instrument, with 132 

a pulse width of 6 µs and a relaxation delay of 2 s. All spectra were collected with a pulse angle 133 

of 51º. 29Si and 27Al chemical shifts were referenced to external samples of tetramethylsilane 134 

(TMS) and a 1.0 M aqueous solution of AlCl3.6H2O, respectively. 135 

 Environmental scanning electron microscopy (ESEM), using an FEI Quanta instrument with a 136 

15 kV accelerating voltage, a Link-Isis (Oxford Instruments) energy dispersive X-ray (EDX) 137 
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detector, and a working distance of 10 mm. Polished, uncoated samples were evaluated in low 138 

vacuum mode, using a backscatter detector for imaging. 139 

 Compressive strength testing, using an ELE International Universal Tester, at a loading rate of 140 

1.0 kN/s for the 50 mm mortar cubes. 141 

 142 

3. Results and discussion 143 

 144 

3.1. Isothermal calorimetry 145 

The heat release rate of the sodium carbonate/silicate activated slag (Fig. 1) shows an initial pre-146 

induction period in the first hour of reaction, corresponding to the wetting and start of dissolution of 147 

the slag particles, followed by an induction period where limited, but non-zero, heat release is 148 

detected during the subsequent 11 hours. This is associated with a progressive dissolution of the 149 

slag and initial condensation and precipitation of reaction products. A low intensity hump was 150 

identified after 3 h of reaction, which is most likely associated with the formation of carbonates. 151 

After 13 h a significant heat release is observed, consistent with the process described as the 152 

acceleration period in cementitious binders, reaching a maximum after 17 h, and the subsequent 153 

deceleration period is complete after 30 hours of reaction. The significant heat release observed in 154 

the acceleration and deceleration periods is assigned to the formation and precipitation of a large 155 

amount of reaction products.  156 

 157 

The kinetics of reaction of these binders resemble what has been identified in sodium silicate 158 

activation of the same slag (Bernal et al., 2014), and in other systems with comparable slag 159 

chemistry (Ben Haha et al., 2011), where the pre-induction period was observed during the first 160 

hour after mixing, followed by short induction periods (10 h in metasilicate activated slags with 161 

MgO contents lower than 8 wt.% (Bernal et al., 2014)). However, the results differ from those 162 

identified for a sodium carbonate activated slag (Bernal et al., 2015), where an induction period of 163 

over 62 hours was detected, and the acceleration-deceleration periods were observed after 4-9 days 164 

of curing. These results demonstrate that the inclusion of sodium silicate is effective in accelerating 165 

the kinetics of reaction of a sodium carbonate activated slag, which could be a consequence of the 166 

combined effects of reducing the fraction of carbonate in the systems (as less Na2CO3 activator is 167 

used), and the increased alkalinity of the system and higher concentration of Si species in the pore 168 

solution, supplied by the sodium metasilicate, at early stages of reaction.  169 

 170 

 171 

 172 
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<Fig 1> 173 

Figure 1. (A)Heat release rate and (B) heat of reaction of an alkali silicate/carbonate activated slag 174 

binder. Heat release data for sodium silicate-only and sodium carbonate–only activated mortars 175 

from (Bernal et al., 2013, 2015) 176 

 177 

 178 

3.2. X-ray diffraction 179 

The X-ray diffractograms of the silicate modified sodium carbonate activated slag are shown in 180 

Figure 2. After 1 day of curing (which is immediately after the acceleration-deceleration peak in the 181 

calorimetry data, Figure 1), the main crystalline compounds present are the three polymorphs of 182 

calcium carbonate (CaCO3): calcite (powder diffraction file, PDF #005-0586), vaterite (PDF #002-183 

0261) and aragonite (PDF #04-013-9616), along with the Na-Ca carbonate phase pirssonite 184 

(Na2Ca(CO3)2·2H2O, PDF# 002-0157), and hydroxysodalite (Na8Al6Si6O24(OH)2(H2O)2, PDF# 04-185 

011-3164). Calcium carbonate in various polymorphs has been identified in sodium carbonate-186 

activated slag binders (Bernal et al., 2015, Fernández-Jiménez and Puertas, 2001), and its formation 187 

was associated with the preferential early age reaction between dissolved CO32- present in the pore 188 

solution and the Ca2+ released by the partial dissolution of the slag (Bernal et al., 2015), comparable 189 

to what is expected to occur during the carbonation reaction of Ca-rich cementitious binders. 190 

 191 

<Fig. 2> 192 

Figure 2. X-ray diffractograms of an alkali silicate/carbonate activated slag as a function of the 193 

time of curing 194 

 195 

It is noted that the intensity of the reflections assigned to the carbonate phases aragonite, vaterite 196 

and pirssonite increase monotonically up to 45 days of curing, followed by a significant decrease at 197 

advanced times of curing. Formation of aragonite or vaterite rather than calcite, in the early stages 198 

of the reaction, may be associated with an intermediate relative humidity reached within the sample 199 

(Dubina et al., 2013), or a high concentration of magnesium present in the pore solution at early 200 

times of curing. Magnesium has a significant influence on calcium carbonate precipitation, and can 201 

stabilise amorphous carbonates, aragonite and/or vaterite when its concentration is sufficiently high 202 

(Falini et al., 1996, Loste et al., 2003). As the alkali-activation reaction progresses, is expected that 203 

the concentration of Mg2+ in the pore solution will decrease with the formation of Mg-rich layered 204 

double hydroxides, and therefore minimising its effect in hindering calcite formation.   205 

 206 
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The addition of sodium silicate here favours the formation of pirssonite rather than the more 207 

hydrated double salt gaylussite (Na2Ca(CO3)2·5H2O), which was identified at early age when 208 

sodium carbonate was used as the sole activator (Bernal et al., 2015, Fernández-Jiménez and 209 

Puertas, 2001). Pirssonite and gaylussite have also been identified as reaction products in naturally 210 

carbonated and accelerated carbonated alkali-activated slag binders (Bernal et al., 2012a, Bernal et 211 

al., 2013), respectively, and the formation of pirssonite as a transient phase in the silicate-modified 212 

sodium carbonate-activated slag binder here is consistent with those findings.  213 

 214 

The formation of zeolites at early age of reaction in sodium carbonate activated slag binders has 215 

been associated with the consumption of Ca2+ by CO3
2- towards formation of carbonates, which 216 

leads to saturation of Si and Al species with respect to aluminosilicate zeolite type products in the 217 

NaOH-rich pore solution from the earliest stages of the reaction process (Bernal et al., 2015). In 218 

absence of sodium silicate, zeolite NaA was identified at early age in Na2CO3-activated slag 219 

binders, but was fully consumed at advanced times of curing (Bernal et al., 2015). The inclusion of 220 

sodium metasilicate favours the formation of hydroxysodalite rather than zeolite NaA; the 221 

reflections assigned to this phase vary in intensity between 1 and 7 days of curing, and the 222 

formation of analcime (NaAlSi2O6, PDF# 01-073-6448) is also observed. Both zeolites are fully 223 

consumed after 7 days of reaction. Sodalite type zeolites can be formed from zeolite Na-A (which is 224 

a closely related framework structure) under highly alkaline conditions (Deng  et al., 2006, Chen et 225 

al., 2010), which suggests that the increased alkalinity, compared with that reached when using 226 

sodium carbonate as sole activator, is favouring the evolution towards sodalite structures in the 227 

silicate/carbonate activated system here. 228 

 229 

Formation of a crystalline layered double hydroxide with a hydrotalcite type structure (resembling 230 

Mg6Al2CO3(OH)16·4H2O, PDF# 014-0191), along with a calcium aluminium silicate hydrate (C-A-231 

S-H) (resembling a disordered, Al-substituted form of tobermorite-11Å, Ca5Si6O18·5H2O, PDF 232 

#045-1480), is identified after 3 days of curing. These phases have been reported as the main 233 

reaction products in NaOH and Na2O∙rSiO2 activated slag binders (Ben Haha et al., 2011, Bernal et 234 

al., 2013, Escalante-Garcia et al., 2003). The intensities of the reflections assigned to these phases 235 

increase substantially during the first 45 days of curing, with only minor variation at advanced age 236 

(180 days), consistent with the deceleration of the progressive activation process after the first 237 

months of reaction. The formation of heulandite, a Ca-rich zeolite which was identified in the 238 

sodium carbonate activated slag paste (Bernal et al., 2015), appears to be suppressed by the 239 

incorporation of sodium silicate in the system.   240 

 241 
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3.3.Nuclear magnetic resonance spectroscopy 242 

The 29Si MAS NMR spectra of the anhydrous slag and sodium carbonate/silicate-activated binders 243 

are shown in Figure 3A. After 1 day of curing, low intensity peaks centred at –80, -83 and -86 ppm, 244 

assigned to Q1, Q2(1Al) and Q2 sites respectively and characteristic of the Al-substituted C-S-H 245 

type phase (Le Saoût et al., 2011, Bernal et al., 2014), are observed. This indicates that the partial 246 

replacement of sodium carbonate by sodium silicate is effectively favouring the formation of 247 

strength-giving phases during the first 24 h of reaction. It is noted (Figure 3A) that the intensity in 248 

the region between -60 and -80 ppm decreases up to 28 days of curing, consistent with the 249 

progressive reaction of the unreacted slag; however at advanced times of curing a slight increase in 250 

the intensity of the sites present in this region was identified. This is mainly associated with the 251 

formation of additional Q1 sites as reaction progresses.  252 

 253 

As reaction progresses, a significant increase in the intensity of these bands is identified. In all 254 

specimens, resonances at -89 and -93 ppm are also observed. These sites are typically assigned to 255 

Q3(1Al) sites present in crosslinked tobermorites with Al(IV)-O-Si linkages (Fernández-Jiménez et 256 

al., 2003) and Q3 sites, respectively. However, a structural model and interpretation of 29Si MAS 257 

NMR results for alkali-activated slags has recently been proposed (Myers et al., 2013), suggesting 258 

that Q3 and Q3(1Al) sites could overlap with contributions of Q4(3Al) and Q4(4Al) sites from an 259 

aluminosilicate type gel forming in Al-rich binders, and these Q4(3Al) and Q4(4Al) sites will thus 260 

also contribute to the -89 and -93 ppm peaks  (Myers et al., 2013, Bernal et al., 2014). According to 261 

this model, the contribution of Q3 sites to the -93 ppm peak may be a minor one, as the majority of 262 

crosslinking sites in the tobermorite-type gel involve an aluminium bridging site, and so this peak is 263 

predominantly related to the Q4 type aluminosilicate environments (Myers et al., 2015). 264 

 265 

<Fig 3> 266 

Figure 3. (A) 29Si MAS NMR spectra as function of the time of curing, and (B) deconvolution of 267 
29Si MAS NMR spectra of 28-day cured of sodium silicate/carbonate-activated slag binders. The 268 

grey area corresponds to the remnant unreacted slag contribution. 269 

 270 

It was suggested (Bernal et al., 2015) that the extraction of calcium from the slag glass, and the 271 

consequent formation of carbonate species, will be favoured at the alkalinity conditions reached in 272 

sodium carbonate activated slag systems (pH 11), and consequently the Q0 sites in the slag would 273 

be prone to preferential release upon reaction. However, recent studies (Snellings et al., 2014, 274 

Snellings, 2015) evaluating the surface characteristics of synthetic glasses within the system CaO-275 

Al2O3-MgO-SiO2 demonstrated that these glasses dissolve congruently in alkaline media (pH above 276 
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11), independent of the content of MgO. The partial substitution of sodium carbonate by sodium 277 

silicate promoted a higher alkalinity (activator pH = 13.1) than is achievable in a sodium carbonate 278 

activating solution, and therefore congruent dissolution of the slag is more plausible in the system 279 

studied here. Based on this, quantitative analysis of these spectra was carried out through the direct 280 

subtraction of the scaled contribution of the unreacted slag component from the spectra of reacted 281 

samples at different times of curing, as proposed by Le Saoût et al. (2011). A summary of the 282 

deconvolution results is shown in Table 2. An example of a deconvoluted 29Si MAS NMR spectrum 283 

is shown in Figure 3B. 284 

  285 

Table 2. Deconvolution results of 29Si MAS NMR spectra of silicate/carbonate-activated slag 286 

binders as a function of the time of curing. Estimated uncertainty in site percentages is ± 2% 287 

Time of 

curing 

(days) 

Unreacted 

slag (%) 

Reaction products 

Q0 Q1(I) Q1(II) Q2(1Al) Q2 
Q3(1Al)/ 

Q4(4Al) 

Q3/ 

Q4(3Al) 

-74 ppm -78 ppm -80 ppm -83 ppm -86 ppm 
-89  

ppm 
-93 ppm 

1 54 3 12 7 12 8 4 0 

3 34 5 16 11 17 11 5 1 

7 33 6 15 12 18 10 5 1 

28 31 5 15 13 19 11 5 1 

45 30 6 17 11 17 9 8 2 

 288 

When sodium silicate was used as the sole activator for slag at a similar dose to the mix designs 289 

used here, unreacted slag percentages of 252% and 21%2% were calculated, after 14 days 290 

(Bernal et al., 2013) and 56 days (Bernal et al., 2014) respectively, through deconvolution of 29Si 291 

MAS NMR spectra. The fraction of unreacted slag in sodium carbonate/silicate slag pastes is 292 

significantly higher, consistent with the delayed kinetics of reaction in this system. As the reaction 293 

progresses during curing, the slag continues reacting in the sodium carbonate/silicate slag pastes, 294 

and eventually approaches a similar extent of reaction at later age to that identified in sodium 295 

silicate activated slag binders. 296 

 297 

Differences in the relative abundances of the silicon site environments are most evident when 298 

comparing the results of paste after 1 day and 3 days of curing, where a significant fraction of 299 

unreacted slag is reacting, promoting the formation of silicon sites assignable to C-(A)-S-H type gel 300 

forming in these materials. This agrees well with the high heat released by these binders (Figure 1) 301 
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within the first 48 h of reaction. The relative fractions of the different sites remain much more 302 

similar from 7 to 45 d, indicating that the binder structure is largely established at 3 d, and the 303 

ongoing reaction continues to produce a larger quantity of similar reaction products, rather than 304 

showing a fundamental shift in the nature of the binder as it matures. It is worth noting that the 305 

fraction of the sites at -89 ppm is comparable in the sodium carbonate/silicate slag paste to that of 306 

sodium silicate activated pastes (-89 ppm fraction 3-7%  (Bernal et al., 2014)), suggesting that the 307 

blended activator is promoting similar crosslinking of the reaction products than when using sodium 308 

silicate as sole activator. 309 

 310 

Three distinct types of aluminium environments, Al(IV) (52-80 ppm), Al(V) (30-40 ppm) and 311 

Al(VI) (0-20 ppm) (Engelhardt and Michel, 1987), are identified in all of the 27Al MAS NMR 312 

spectra (Figure 4). Sharpening in the tetrahedral Al band is observed after 1 day of curing, along 313 

with the appearance of a shoulder centred at 74 ppm, whose intensity increases with curing time. 314 

This band corresponds to the Al(IV) incorporated in bridging tetrahedra in the C-A-S-H (Andersen 315 

et al., 2003, Sun et al., 2006). These results are consistent with the 29Si MAS NMR data, where 316 

formation of C-A-S-H type phases is identified after 1 day of curing, and differs from the trends 317 

identified in Na2CO3-activated slag cement (Bernal et al., 2015), where the distinctive peaks 318 

assigned to the strength-giving phase C-A-S-H were only observed after 7 days of curing. This is 319 

also in good agreement with the much later onset of the acceleration peak in the calorimetry data for 320 

the carbonate-only system (Figure 1). 321 

 322 

In pastes cured for 7 days, asymmetric broadening of the band at 68 ppm is observed, along with the 323 

formation of a low intensity shoulder at ~58 ppm, consistent with the formation of Al-substituted 324 

tobermorites with low Ca/(Si+Al) ratio (Sun et al., 2006) and highly crosslinked C-A-S-H phases 325 

(Myers et al., 2013). Formation of a narrow peak centred at 8.7 ppm is also observed at early times 326 

of curing (1 day), and the intensity in this region significantly increases as the reaction progresses. 327 

This peak has been assigned to layered double hydroxide type phases in alkali-activated slag 328 

cements (Bernal et al., 2013), including hydrotalcite and/or AFm type phases, and the increase in 329 

intensity of this peak with curing duration is in good agreement with the observation of hydrotalcite 330 

by XRD (Figure 2). Hence, it can be stated that the addition of sodium silicate is accelerating the 331 

kinetics of reaction in this blended system, via preferential reaction of Si species supplied by the 332 

activator with the Ca from the dissolving slag, favouring formation of C-A-S-H phases within the 333 

first day of reaction.   334 

 335 

 336 
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<Fig 4> 337 

Figure 4. 27Al MAS NMR spectra of sodium silicate/carbonate-activated slag binders as function of 338 

the time of curing 339 

 340 

3.4.Scanning electron microscopy  341 

 342 

Backscattered electron (BSE) images of the paste evaluated at three different magnifications and 343 

two different curing durations (7 and 28 days) are shown in Figure 5. In the 7-day cured sample 344 

(Figure 5A) several distinctive features are identified, with varying greyscale intensities. Light grey 345 

angular particles correspond to remnant unreacted slag grains. These slag particles are embedded in 346 

a mostly continuous matrix, which contains some isolated dark grey regions which will be 347 

discussed in detail below, and large pores (black regions). Little difference is visually identifiable 348 

between the samples cured for 7 and 28 days (Figure 5B), although the XRD data in Figure 2 349 

showed the consumption of the zeolitic phases during this time interval, which indicates that this 350 

process does not have a significant influence on the microstructure on the length scale observable 351 

by SEM. Conversely, at more advanced times of curing (90 days, Figure 5C) the dark grey and 352 

black regions are no longer identifiable, and instead the material is mainly composed of a dense and 353 

homogeneous matrix, encapsulating the remaining unreacted slag particles. Change in greyscale 354 

intensity in SEM imaging of cementitious binders can be attributed either to a change in the 355 

chemistry of the binding gel, or to changes in density (Ben Haha et al., 2011, Zhang et al., 2002, 356 

Kjellsen, 1996, Famy et al., 2002). To separate these effects, elemental maps of pastes cured for 7 357 

and 90 days were collected, and are reported in Figure 5 and 6, respectively.  358 

 359 

<Fig 5> 360 

Figure 5. BSE images of sodium carbonate/silicate-activated slag binders after (A) 7, (B) 28 and 361 

(C) 90 days of curing, at three different magnifications per sample (denoted 0, 1 and 2) 362 

 363 

In the 7 day-cured paste, two distinctive areas can be identified in the BSE image in Figure 6: a 364 

light grey homogenous matrix rich in Al, Si and Ca, consistent with a C-A-S-H type phase, as 365 

previously identified in these pastes via NMR (Figure 3), and a dark grey area similar to those noted 366 

in Figure 5A. This region has a lower content of Ca than the light grey region, and is enriched in 367 

Na, O, and C. In this region, little or no Al, Mg and Si are present, and so the elemental 368 

composition of the dark area is consistent with the presence of an Na-Ca carbonate type phase. 369 

XRD results for this early-age paste (Figure 2) showed the formation of pirssonite 370 

(Na2Ca(CO3)2·2H2O), and therefore it is likely that these areas correspond to this phase. In the paste 371 
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cured for 90 days (Figure 7), corresponding Ca-Na carbonate areas were not identified (consistent 372 

with the reduction in pirssonite in the XRD data in Figure 2 at later ages); instead, a homogeneous 373 

matrix with Ca, Na, Al, and Si more evenly distributed is observed. This is consistent with the 374 

formation of a C-(N)-A-S-H type phase as the main binding product, as identified by other 375 

analytical techniques throughout this study.  376 

 377 

<Fig 6> 378 

Figure 6. BSE image and corresponding elemental maps of a sodium carbonate/silicate activated 379 

slag cured for 7 days 380 

 381 

 382 

<Fig 7> 383 

Figure 7. BSE image and corresponding elemental maps of a sodium carbonate/silicate activated 384 

slag cured for 90 days 385 

 386 

3.5. Compressive strength  387 

 388 

Mortars produced with the sodium carbonate/silicate activator developed a compressive strength of 389 

19 MPa after 1 day of curing (Figure 8). Subsequent to this, a significant increase in compressive 390 

strength is also observed between 1 and 4 days of curing, so that the mortars reach a strength of 44 391 

MPa after 7 days. This differs from what has been observed for sodium carbonate activated 392 

materials produced with the same slag used in this study (Bernal et al., 2015), where the material 393 

had not yet hardened after 1 day of curing, and after 4 and 7 days of curing the mortars achieved 394 

compressive strengths of 9 MPa and 33 MPa, respectively. Longer curing times promote further 395 

strength development, in agreement with the densification of the matrix observed by SEM (Figure 396 

5). Mortars cured for 56 days reached 63 MPa, which is 20 MPa higher than is achieved when 397 

sodium carbonate is utilised as the sole activator (Bernal et al., 2015).  398 

 399 

<Fig 8> 400 

Figure 8. Compressive strength development of a sodium silicate/carbonate activated slag binder, 401 

compared with data for similar mix designs using silicate-only and carbonate-only activators. 402 

Compressive strength data of sodium carbonate activated slag mortars from (Bernal et al., 2015) 403 

 404 

 405 
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The earlier strength development in the carbonate/silicate activated slag mortars is associated with 406 

the reduced concentration of CO3
2- in the system compared to the carbonate-only activator, as in the 407 

absence of dissolved silicates, the calcium released by slag dissolution is consumed via formation of 408 

carbonate phases instead of forming strength-giving binder gels. The higher alkalinity of the sodium 409 

silicate-containing solution accelerates the slag dissolution compared to the sodium carbonate-only 410 

system, and the Si species supplied by the sodium silicate component of the activator participate in 411 

formation of the strength-giving phase C-A-S-H within the first 24 h of reaction, as identified via 412 

XRD and solid-state NMR spectroscopy, and therefore favour high early strength development of 413 

these cements.  414 

 415 

The compressive strength values of the sodium carbonate and sodium carbonate/silicate activated 416 

slag pastes are generally lower than those of the silicate-only system; however after 56 days of 417 

curing, the strength values of the carbonate/silicate activated paste are comparable to those of 418 

silicate activated pastes, although a reduced degree of reaction of the slag was identified in this mix, 419 

compared with the silicate only system. 420 

 421 

 422 

 423 

4. Conclusions 424 

 425 

This paper demonstrates that highly significant performance gains in alkali-carbonate activation of 426 

slags can be achieved through the addition of sodium silicate, particularly in terms of early-age 427 

reaction rate and strength. Setting and hardening occur within the first 24 h after mixing under 428 

ambient-temperature sealed curing, and a significant strength (19 MPa) is achieved at this point in 429 

time, which would be sufficient for demoulding or formwork removal. This route to the production 430 

of alkali-activated binders offers a reduced cost (both financial and environmental) compared with 431 

the use of a silicate-only activator, with but with performance which significantly exceeds that of a 432 

carbonate-only system. The addition of sodium silicate is promoting faster dissolution of the slag, 433 

as identified via isothermal calorimetry, as higher alkalinities are achieved compared with sodium 434 

carbonate activation. The carbonate ions are removed from the liquid phase in the hardening paste 435 

by reaction with the calcium released by the slag; this early-age formation of alkali/alkali-earth 436 

carbonates is accompanied by early formation of calcium (alumino-)silicate hydrate as a strength-437 

giving product. The calcium carbonate phases formed at early age remain stable in the reaction 438 

product assemblage, while the alkali/alkali-earth carbonate double salts, as well as some zeolitic 439 

phases which incorporate the excess alumina supplied by the slag, are transient phases which are 440 



14 

later converted to calcium (alumino-)silicate hydrate and hydrotalcite as further Ca and Mg are 441 

supplied by the ongoing reaction of the slag. The final binder microstructure is dense and relatively 442 

homogeneous, with a compressive strength exceeding 60 MPa after 56 days. 443 
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